Web Scraping Services, Web Data Scraping, Website Data Scraping, Data Scraping Services, Business Directory Scraping, Yahoo Answers Scraping, Artindex.Com Scraping, Scrape Autotrader Database, Scrape Cars Database, Product Scraping Services

Saturday 27 August 2016

How to use Social Media Scraping to be your Competitors’ Nightmare

How to use Social Media Scraping to be your Competitors’ Nightmare

Big data and competitive intelligence have been in the limelight for quite some time now. The almost magical power of big data to help a company make just the right decisions have been talked about a lot. When it comes to big data, the kind of benefits that a business can get totally depends upon the sources they acquire it from. Social media is one of the best sources from where you can get data that helps your business in a multitude of ways. Now that every business is deep rooted on the internet, social media data becomes all the more relevant and crucial. Here is how you can use data scraped from social media sites to get an edge in the competition.

Keeping watch on your competitors

Social media is the best place to watch your competitors’ activity and take counter initiatives to keep up or take over them. If you want to know what your competitors are up to, a social media scraping setup for scraping the posts that mention your competitors’ brand/product names can do the trick. This can also be used to learn a thing or two from their activities on social media so that you can take respective measures to stay ahead of them. For example, you could know if your competitor is running a special promotional offer at the moment and come up with something better than theirs to keep up. This can do wonders if you are in a highly competitive industry like Ecommerce where the competition is intense. If you are not using some help from web scraping technology to keep a close watch on your competitors, you could easily get left over in this fast-paced business scene.

Solving customer issues at the earliest

Customers are vocal about their experience with different products and services on social media sites these days. If you have a customer whose issue was left unsolved, there is a good chance that he/she will take it to the social media to vent the frustration. Watching out for such instances and giving them prompt support should be something you should do if you want to retain these customers and stop them from ruining your brand’s image. By scraping social media sites for posts that mention your product/service, you can easily find out if there are such grievances from customers. This can make sure to an extent that you don’t let unhappy customers stay that way, which eventually hurts your business in the long run. Customers can make or break your company, so using social media scraping to serve the customers better can help you succeed eventually.

Sentiment analysis

Social media data can play a good job at helping you understand user sentiments. With the help of social media scraping, a business can get the big picture about general perception of their brand by their users. This can go a long way since this level of feedback can help you fix unnoticed issues with your company and service quickly. By rectifying them, you can make your brand more appealing to the customers. Sentiment analysis will provide you with the opportunity to transform your business into how customers want it to be. Social media scraping is the one and only way to have access to this user sentiment data which can help you optimize your business for the customers.

Web crawling for social media data

When social media data possess so much value to businesses, it makes sense to look for efficient ways to gather and use this data. Manually scrolling through millions of tweets doesn’t make sense, this is why you should use social media scraping to aggregate the relevant data for your business. Besides, web scraping technologies make it possible to handle huge amounts of data with ease. Since the size of data is huge when it comes to business related requirements, web scraping is the only scalable solution worth considering. To make things even simpler, there are reliable web scraping solutions that offer social media scraping services for brand monitoring.

Bottom line

Since social media has become an integral part of online businesses, the data available on these sites possess immense value to companies in every industry. Social media scraping can be used for brand monitoring and gaining competitive intelligence that can be used to optimize your business model for maximum effectiveness. This will in turn make your company stand out from the competition and the added advantage of insights gained from social media data will help you to take over your competitors.

Source: https://www.promptcloud.com/blog/social-media-scraping-for-competitive-intelligence

Tuesday 16 August 2016

ERP Data Conversions - Best Practices and Steps

ERP Data Conversions - Best Practices and Steps

Every company who has gone through an ERP project has gone through the painful process of getting the data ready for the new system. The process of executing this typically goes through the following steps:

(1) Extract or define

(2) Clean and transform

(3) Load

(4) Validate and verify

This process is typically executed multiple times (2 - 5+ times depending on complexity) through an ERP project to ensure that the good data ends up in the new system. If the data is either incorrect, not well enough cleaned or adjusted or loaded incorrectly in to the new system it can cause serious problems as the new system is launched.

(1) Extract or define

This involves extracting the data from legacy systems, which are to be decommissioned. In some cases the data may not exist in a legacy system, as the old process may be spreadsheet-based and has to be created from scratch. Typically this involves creating some extraction programs or leveraging existing reports to get the data in to a format which can be put in to a spreadsheet or a data management application.

(2) Data cleansing

Once extracted it normally reviewed is for accuracy by the business, supported by the IT team, and/or adjusted if incorrect or in a structure which the new ERP system does not understand. Depending on the level of change and data quality this can represent a significant effort involving many business stakeholders and required to go through multiple cycles.

(3) Load data to new system

As the data gets structured to a format which the receiving ERP system can handle the load programs may also be build to handle certain changes as part of the process of getting the data converted in to the new system. Data is loaded in to interface tables and loaded in to the new system's core master data and transactions tables.

When loading the data in to the new system the inter-dependency of the different data elements is key to consider and validate the cross dependencies. Exceptions are dealt with and go in to lessons learned and to modify extracts, data cleansing or load process in to the next cycle.

(4) Validate and verify

The final phase of the data conversion process is to verify the converted data through extracts, reports or manually to ensure that all the data went in correctly. This may also include both internal and external audit groups and all the key data owners. Part of the testing will also include attempting to transact using the converted data successfully.

The topmost success factors or best practices to execute a successful conversion I would prioritize as follows:

(1) Start the data conversion early enough by assessing the quality of the data. Starting too late can result in either costly project delays or decisions to load garbage and "deal with it later" resulting in an increase in problems as the new system is launched.

(2) Identify and assign data owners and customers (often forgotten) for the different elements. Ensure that not only the data owners sign-off on the data conversions but that also the key users of the data are involved in reviewing the selection criteria's, data cleansing process and load verification.

(3) Run sufficient enough rounds of testing of the data, including not only validating the loads but also transacting with the converted data.

(4) Depending on the complexity, evaluate possible tools beyond spreadsheets and custom programming to help with the data conversion process for cleansing, transformation and load process.

(5) Don't under-estimate the effort in cleansing and validating the converted data.

(6) Define processes and consider other tools to help how the accuracy of the data will be maintained after the system goes live.

Source: http://ezinearticles.com/?ERP-Data-Conversions---Best-Practices-and-Steps&id=7263314

Monday 8 August 2016

Getting Data from the Web

Getting Data from the Web

You’ve tried everything else, and you haven’t managed to get your hands on the data you want. You’ve found the data on the web, but, alas — no download options are available and copy-paste has failed you. Fear not, there may still be a way to get the data out. For example you can:

Get data from web-based APIs, such as interfaces provided by online databases and many modern web applications (including Twitter, Facebook and many others). This is a fantastic way to access government or commercial data, as well as data from social media sites.

Extract data from PDFs. This is very difficult, as PDF is a language for printers and does not retain much information on the structure of the data that is displayed within a document. Extracting information from PDFs is beyond the scope of this book, but there are some tools and tutorials that may help you do it.

Screen scrape web sites. During screen scraping, you’re extracting structured content from a normal web page with the help of a scraping utility or by writing a small piece of code. While this method is very powerful and can be used in many places, it requires a bit of understanding about how the web works.

With all those great technical options, don’t forget the simple options: often it is worth to spend some time searching for a file with machine-readable data or to call the institution which is holding the data you want.

In this chapter we walk through a very basic example of scraping data from an HTML web page.
What is machine-readable data?

The goal for most of these methods is to get access to machine-readable data. Machine readable data is created for processing by a computer, instead of the presentation to a human user. The structure of such data relates to contained information, and not the way it is displayed eventually. Examples of easily machine-readable formats include CSV, XML, JSON and Excel files, while formats like Word documents, HTML pages and PDF files are more concerned with the visual layout of the information. PDF for example is a language which talks directly to your printer, it’s concerned with position of lines and dots on a page, rather than distinguishable characters.
Scraping web sites: what for?

Everyone has done this: you go to a web site, see an interesting table and try to copy it over to Excel so you can add some numbers up or store it for later. Yet this often does not really work, or the information you want is spread across a large number of web sites. Copying by hand can quickly become very tedious, so it makes sense to use a bit of code to do it.

The advantage of scraping is that you can do it with virtually any web site — from weather forecasts to government spending, even if that site does not have an API for raw data access.
What you can and cannot scrape

There are, of course, limits to what can be scraped. Some factors that make it harder to scrape a site include:

Badly formatted HTML code with little or no structural information e.g. older government websites.

Authentication systems that are supposed to prevent automatic access e.g. CAPTCHA codes and paywalls.

Session-based systems that use browser cookies to keep track of what the user has been doing.

A lack of complete item listings and possibilities for wildcard search.

Blocking of bulk access by the server administrators.

Another set of limitations are legal barriers: some countries recognize database rights, which may limit your right to re-use information that has been published online. Sometimes, you can choose to ignore the license and do it anyway — depending on your jurisdiction, you may have special rights as a journalist. Scraping freely available Government data should be fine, but you may wish to double check before you publish. Commercial organizations — and certain NGOs — react with less tolerance and may try to claim that you’re “sabotaging” their systems. Other information may infringe the privacy of individuals and thereby violate data privacy laws or professional ethics.
Tools that help you scrape

There are many programs that can be used to extract bulk information from a web site, including browser extensions and some web services. Depending on your browser, tools like Readability (which helps extract text from a page) or DownThemAll (which allows you to download many files at once) will help you automate some tedious tasks, while Chrome’s Scraper extension was explicitly built to extract tables from web sites. Developer extensions like FireBug (for Firefox, the same thing is already included in Chrome, Safari and IE) let you track exactly how a web site is structured and what communications happen between your browser and the server.

ScraperWiki is a web site that allows you to code scrapers in a number of different programming languages, including Python, Ruby and PHP. If you want to get started with scraping without the hassle of setting up a programming environment on your computer, this is the way to go. Other web services, such as Google Spreadsheets and Yahoo! Pipes also allow you to perform some extraction from other web sites.
How does a web scraper work?

Web scrapers are usually small pieces of code written in a programming language such as Python, Ruby or PHP. Choosing the right language is largely a question of which community you have access to: if there is someone in your newsroom or city already working with one of these languages, then it makes sense to adopt the same language.

While some of the click-and-point scraping tools mentioned before may be helpful to get started, the real complexity involved in scraping a web site is in addressing the right pages and the right elements within these pages to extract the desired information. These tasks aren’t about programming, but understanding the structure of the web site and database.

When displaying a web site, your browser will almost always make use of two technologies: HTTP is a way for it to communicate with the server and to request specific resource, such as documents, images or videos. HTML is the language in which web sites are composed.
The anatomy of a web page

Any HTML page is structured as a hierarchy of boxes (which are defined by HTML “tags”). A large box will contain many smaller ones — for example a table that has many smaller divisions: rows and cells. There are many types of tags that perform different functions — some produce boxes, others tables, images or links. Tags can also have additional properties (e.g. they can be unique identifiers) and can belong to groups called ‘classes’, which makes it possible to target and capture individual elements within a document. Selecting the appropriate elements this way and extracting their content is the key to writing a scraper.

Viewing the elements in a web page: everything can be broken up into boxes within boxes.

To scrape web pages, you’ll need to learn a bit about the different types of elements that can be in an HTML document. For example, the <table> element wraps a whole table, which has <tr> (table row) elements for its rows, which in turn contain <td> (table data) for each cell. The most common element type you will encounter is <div>, which can basically mean any block of content. The easiest way to get a feel for these elements is by using the developer toolbar in your browser: they will allow you to hover over any part of a web page and see what the underlying code is.

Tags work like book ends, marking the start and the end of a unit. For example <em> signifies the start of an italicized or emphasized piece of text and </em> signifies the end of that section. Easy.

An example: scraping nuclear incidents with Python

NEWS is the International Atomic Energy Agency’s (IAEA) portal on world-wide radiation incidents (and a strong contender for membership in the Weird Title Club!). The web page lists incidents in a simple, blog-like site that can be easily scraped.

To start, create a new Python scraper on ScraperWiki and you will be presented with a text area that is mostly empty, except for some scaffolding code. In another browser window, open the IAEA site and open the developer toolbar in your browser. In the “Elements” view, try to find the HTML element for one of the news item titles. Your browser’s developer toolbar helps you connect elements on the web page with the underlying HTML code.

Investigating this page will reveal that the titles are <h4> elements within a <table>. Each event is a <tr> row, which also contains a description and a date. If we want to extract the titles of all events, we should find a way to select each row in the table sequentially, while fetching all the text within the title elements.

In order to turn this process into code, we need to make ourselves aware of all the steps involved. To get a feeling for the kind of steps required, let’s play a simple game: In your ScraperWiki window, try to write up individual instructions for yourself, for each thing you are going to do while writing this scraper, like steps in a recipe (prefix each line with a hash sign to tell Python that this not real computer code). For example:

  # Look for all rows in the table
  # Unicorn must not overflow on left side.

Try to be as precise as you can and don’t assume that the program knows anything about the page you’re attempting to scrape.

Once you’ve written down some pseudo-code, let’s compare this to the essential code for our first scraper:

  import scraperwiki
  from lxml import html

In this first section, we’re importing existing functionality from libraries — snippets of pre-written code. scraperwiki will give us the ability to download web sites, while lxml is a tool for the structured analysis of HTML documents. Good news: if you are writing a Python scraper with ScraperWiki, these two lines will always be the same.

  url = "http://www-news.iaea.org/EventList.aspx"
  doc_text = scraperwiki.scrape(url)
  doc = html.fromstring(doc_text)

Next, the code makes a name (variable): url, and assigns the URL of the IAEA page as its value. This tells the scraper that this thing exists and we want to pay attention to it. Note that the URL itself is in quotes as it is not part of the program code but a string, a sequence of characters.

We then use the url variable as input to a function, scraperwiki.scrape. A function will provide some defined job — in this case it’ll download a web page. When it’s finished, it’ll assign its output to another variable, doc_text. doc_text will now hold the actual text of the website — not the visual form you see in your browser, but the source code, including all the tags. Since this form is not very easy to parse, we’ll use another function, html.fromstring, to generate a special representation where we can easily address elements, the so-called document object model (DOM).

  for row in doc.cssselect("#tblEvents tr"):
  link_in_header = row.cssselect("h4 a").pop()
  event_title = link_in_header.text
  print event_title

In this final step, we use the DOM to find each row in our table and extract the event’s title from its header. Two new concepts are used: the for loop and element selection (.cssselect). The for loop essentially does what its name implies; it will traverse a list of items, assigning each a temporary alias (row in this case) and then run any indented instructions for each item.

The other new concept, element selection, is making use of a special language to find elements in the document. CSS selectors are normally used to add layout information to HTML elements and can be used to precisely pick an element out of a page. In this case (Line. 6) we’re selecting #tblEvents tr which will match each <tr> within the table element with the ID tblEvents (the hash simply signifies ID). Note that this will return a list of <tr> elements.

As can be seen on the next line (Line. 7), where we’re applying another selector to find any <a> (which is a hyperlink) within a <h4> (a title). Here we only want to look at a single element (there’s just one title per row), so we have to pop it off the top of the list returned by our selector with the .pop() function.

Note that some elements in the DOM contain actual text, i.e. text that is not part of any markup language, which we can access using the [element].text syntax seen on line 8. Finally, in line 9, we’re printing that text to the ScraperWiki console. If you hit run in your scraper, the smaller window should now start listing the event’s names from the IAEA web site.

  figs/incoming/04-DD.png
  Figure 58. A scraper in action (ScraperWiki)

You can now see a basic scraper operating: it downloads the web page, transforms it into the DOM form and then allows you to pick and extract certain content. Given this skeleton, you can try and solve some of the remaining problems using the ScraperWiki and Python documentation:

Can you find the address for the link in each event’s title?

Can you select the small box that contains the date and place by using its CSS class name and extract the element’s text?

ScraperWiki offers a small database to each scraper so you can store the results; copy the relevant example from their docs and adapt it so it will save the event titles, links and dates.

The event list has many pages; can you scrape multiple pages to get historic events as well?

As you’re trying to solve these challenges, have a look around ScraperWiki: there are many useful examples in the existing scrapers — and quite often, the data is pretty exciting, too. This way, you don’t need to start off your scraper from scratch: just choose one that is similar, fork it and adapt to your problem.

Source: http://datajournalismhandbook.org/1.0/en/getting_data_3.html