Web Scraping Services, Web Data Scraping, Website Data Scraping, Data Scraping Services, Business Directory Scraping, Yahoo Answers Scraping, Artindex.Com Scraping, Scrape Autotrader Database, Scrape Cars Database, Product Scraping Services

Wednesday, 31 December 2014

Data Extraction, Web Screen Scraping Tool, Mozenda Scraper

Web Scraping

Web scraping, also known as Web data extraction or Web harvesting, is a software method of extracting data from websites. Web scraping is closely related and similar to Web indexing, which indexes Web content. Web indexing is the method used by most search engines. The difference with Web scraping is that it focuses more on the translation of unstructured content on the Web, characteristically in rich text format like that of HTML, into controlled data that can be analyzed stored and in a spreadsheet or database. Web scraping also makes Web browsing more efficient and productive for users. For example, Web scraping automates weather data monitoring, online price comparison, and website change recognition and data integration. 

This clever method that uses specially coded software programs is also used by public agencies. Government operations and Law enforcement authorities use data scrape methods to develop information files useful against crime and evaluation of criminal behaviors. Medical industry researchers get the benefit and use of Web scraping to gather up data and analyze statistics concerning diseases such as AIDS and the most recent strain of influenza like the recent swine flu H1N1 epidemic.

Data scraping is an automatic task performed by a software program that extracts data output from another program, one that is more individual friendly. Data scraping is a helpful device for programmers who have to generate a line through a legacy system when it is no longer reachable with up to date hardware. The data generated with the use of data scraping takes information from something that was planned for use by an end user.

One of the top providers of Web Scraping software, Mozenda, is a Software as a Service company that provides many kinds of users the ability to affordably and simply extract and administer web data. Using Mozenda, individuals will be able to set up agents that regularly extract data then store this data and finally publish the data to numerous locations. Once data is in the Mozenda system, individuals may format and repurpose data and use it in other applications or just use it as intelligence. All data in the Mozenda system is safe and sound and is hosted in a class A data warehouses and may be accessed by users over the internet safely through the Mozenda Web Console.

One other comparative software is called the Djuggler. The Djuggler is used for creating web scrapers and harvesting competitive intelligence and marketing data sought out on the web. With Dijuggles, scripts from a Web scraper may be stored in a format ready for quick use. The adaptable actions supported by the Djuggler software allows for data extraction from all kinds of webpages including dynamic AJAX, pages tucked behind a login, complicated unstructured HTML pages, and much more. This software can also export the information to a variety of formats including Excel and other database programs.

Web scraping software is a ground-breaking device that makes gathering a large amount of information fairly trouble free. The program has many implications for any person or companies who have the need to search for comparable information from a variety of places on the web and place the data into a usable context. This method of finding widespread data in a short amount of time is relatively easy and very cost effective. Web scraping software is used every day for business applications, in the medical industry, for meteorology purposes, law enforcement, and government agencies.

Source:http://www.articlesbase.com/databases-articles/data-extraction-web-screen-scraping-tool-mozenda-scraper-3568330.html

Monday, 29 December 2014

Web Data Scraping Services At Lowest Rate For Business Directory

We are the world's most trusted provider directory, your business data scrape, and scrape email scraping and sending the data needed. We scour the entire directory database or doctors, lawyers, brokers, financial advisers, etc. As the scraping of a particular industry category wise database scraping or data that can be adapted.

We are pioneers in the worldwide web scraping and data services. We must understand the value of our customer database, we email id with the greatest effort to collect data. We are lawyers, doctors, brokers, realtors, schools, students, universities, IT managers, pubs, bars, nightclubs, dance clubs, financial advisers, liquor stores, Face book, Twitter, pharmaceutical companies, mortgage broker scraped data, accounting firms, car dealers , artists, shop health and job portals.

Our business database development services to try and get real quality at the lowest possible industry. Example worked. We have a quick turnaround time can be a business mailing database. Our business database development services to try and get real quality at the lowest possible industry. Example worked. We have a quick turnaround time can be a business mailing database.

We are the world's most trusted provider directory, your business data scrape, and scrape email scraping and sending the data needed. We scour the entire directory database or doctors, lawyers, brokers, financial advisers, etc., as the scraping of a particular industry category wise database scraping or data that can be adapted.

We are pioneers in the worldwide web scraping and data services. We must understand the value of our customer database, we email id with the greatest effort to collect data. We are lawyers, doctors, brokers, realtors, schools, students, universities, IT managers, pubs, bars, nightclubs, dance clubs, financial advisers, liquor stores, Face book, Twitter, pharmaceutical companies, mortgage broker scraped data, accounting firms, car dealers , artists, shop health and job portals.

What a great resource for specific information or content with little success to gather and have tried to organize themselves in a folder? You no longer need to worry, and data processing services through our website search are the best solution for your problem.

We currently have an "information explosion" phase of the walk, where there is so much information and content information for an event or a small group of channels.

Order without the benefit of you and your customers a little truth to that information. You use information and material is easy to organize in a way that is needed. Something other than a small business guide, simply create a separate folder in less than an hour.

Our technology-specific Web database for you to a similar configuration and database development to use. In addition, we finished our services can help you through the data to identify the sources of information for web pages to follow. This is a cost effective way to create a database.

We offer directory database, company name, address, the state, country, phone, email and website URL to take. In recent projects we have completed. We have a quick turnaround time can be a business mailing database. Our business database development services to try and get real quality at the lowest possible industry.

Source:http://www.articlesbase.com/outsourcing-articles/web-data-scraping-services-at-lowest-rate-for-business-directory-5757029.html

Sunday, 28 December 2014

So What Exactly Is A Private Data Scraping Services To Use You?

If your computer connects to the Internet or resources on the request for this information, and queries to different servers. If you have a website to introduce to the site server recognizes your computer's IP address and displays the data and much more. Many e - commerce sites use to log your IP address, and the browsing patterns for marketing purposes.

Related Articles

Follow Some Tips For Data Scraping Services

Web Data Scraping Assuring Scraping Success Proxy Data Services

Data Scraping Services with Proxy Data Scraping

Web Data Extraction Services for Data Collection - Screen Scrapping Services, Data Mining Services

The  Scraping server you connect to your destination or to process your information and make a filter. For example, IP address or protocol filtering traffic through a  Scraping service. As you might guess, there are many types of  Scraping services. including the ability to a high demand for the software. Email messages are quickly sent to businesses and companies to help you search for contacts.

Although there are Sanding free  Scraping IP addresses in this way can work, the use of payment services, and automatic user interface (plug and play) are easy to give.  Scraping web information services, thus offering a variety of relevant sources of data.  Scraping information service organizations are generally used where large amounts of data every day. It is possible for you to receive efficient, high precision is also affordable.

Information on the various strategies that companies,  Scraping excellent information services, and use the structure planned out and has led to the introduction of more rapid relief of the Earth.

In addition, the application software that has flexibility as a priority. In addition, there is a software that can be tailored to the needs of customers, and satisfy various customer requirements play a major role. Particular software, allows businesses to sell, a customer provides the features necessary to provide the best experience.

If you do not use a private Data Scraping Services suggest that you immediately start your Internet marketing. It is an inexpensive but vital to your marketing company. To choose how to set up a private  Scraping service, visit my blog for more information. Data Scraping Services software as the activity data and provides a large amount of information, Sorting. In this way, the company reduced the cost and time savings and greater return on investment will be a concept.

Without the steady stream of data from these sites to get stopped? Scraping HTML page requests sent by argument on the web server, depending on changes in production, it is very likely to break their staff. 

Data Scraping Services is common in the respective outsourcing company. Many companies outsource  Data Scraping Services service companies are increasingly outsourcing these services, and generally dealing with the Internet business-related activities, in particular a lot of money, can earn.

Web  Data Scraping Services, pull information from a structured plan format. Informal or semi-structured data source from the source.They are there to just work on your own server to extract data to execute. IP blocking is not a problem for them when they switch servers in minutes and back on track, scraping exercise. Try this service and you'll see what I mean.

It is an inexpensive but vital to your marketing company. To choose how to set up a private  Scraping service, visit my blog for more information. Data Scraping Services software as the activity data and provides a large amount of information, Sorting. In this way, the company reduced the cost and time savings and greater return on investment will be a concept.

Source:http://www.articlesbase.com/outsourcing-articles/so-what-exactly-is-a-private-data-scraping-services-to-use-you-5587140.html

Wednesday, 24 December 2014

Central Qld Coal: Mining for Needed Investments

The Central Qld Coal Project is situated in the Galilee Coal Basin, Central Queensland with the purpose of establishing a mine to service international export markets for thermal coal. An estimated cost to such a project would be around $ 7.5 billion - the amount proves that the mining industry is one serious business to begin with.

In addition to the mine, the Central Qld Coal Project also proposes to construct a railway, potentially in excess of 400km depending on the final option: Either to transport processed coal to an expanded facility at Abbot Point or new export terminal to be established at Dudgeon Point. However, this would require new major water and power supply infrastructure to service the mine and port - hence, the extremely high cost. Because mining areas usually involve desolate areas where there is no direct risk to developed regions where the populace thrives, setting up new major water and power supplies would simply demand costs as high as the estimated cost - but this is not the only major percent of the whole budget of the Central Qld Coal Project.

The location for the Central Qld Coal Project is situated 40km northwest of Alpha, approximately 450 km west of Rockhampton and contains an amount of more than three billion tons. The proposed open-cut mine of the Central Qld Coal Project is expected to be developed in stages. It shall have an initial export capacity of 30 million tons per annum with a mine life expectancy of 30 years.

In terms of employment regarding Central Qld Coal Project, there will be around a total of 2,500 people to be employed during the construction and 1,600 permanent positions shall be employed in the operation stage of the Central Qld Coal Project.

Australia is a major coal exporter - the largest exporter of coal and fourth largest producer of coal. Australia is also the second largest producer of gold, second only to China. As for Opal, Australia is responsible for 95% of its production, thereby making her the largest producer worldwide. Australia would not also lose in terms of commercially viable diamond deposits - being third next after Russia and Botswana. This pretty much explains the significance of the mining industry to Australia. It is like the backbone of its economy; an industry focused on claiming the blessings the earth has giver her lands. The Central Qld Coal Project was made to further the exports and improve the trade. However, the Central Qld Coal Project requires quite a large sum for its project. It is only through the financial support of investments, both local and international, can it achieve its goals and begin reaping the fruits of the land.

Source: http://ezinearticles.com/?Central-Qld-Coal:-Mining-for-Needed-Investments&id=6314576

Monday, 22 December 2014

GScholarXScraper: Hacking the GScholarScraper function with XPath

Kay Cichini recently wrote a word-cloud R function called GScholarScraper on his blog which when given a search string will scrape the associated search results returned by Google Scholar, across pages, and then produce a word-cloud visualisation.

This was of interest to me because around the same time I posted an independent Google Scholar scraper function  get_google_scholar_df() which does a similar job of the scraping part of Kay’s function using XPath (whereas he had used Regular Expressions). My function worked as follows: when given a Google Scholar URL it will extract as much information as it can from each search result on the URL webpage  into different columns of a dataframe structure.

In the comments of his blog post I figured it’d be fun to hack his function to provide an XPath alternative, GScholarXScraper. Essensially it’s still the same function he wrote and therefore full credit should go to Kay on this one as he fully deserves it – I certainly had no previous idea how to make a word cloud, plus I hadn’t used the tm package in ages (to the point where I’d forgotten most of it!). The main changes I made were as follows:

    Restructure internal code of GScholarScraper into a series of local functions which each do a seperate job (this made it easier for me to hack because I understood what was doing what and why).

    As far as possible, strip out Regular Expressions and replace with XPath alternatives (made possible via the XML package). Hence the change of name to GScholarXScraper. Basically, apart from a little messing about with the generation of the URLs I just copied over my get_google_scholar_df() function and removed the Regular Expression alternatives. I’m not saying one is better than the other but f0r me personally, I find XPath shorter and quicker to code but either is a good approach for web scraping like this (note to self: I really need to lean more about regular expressions!) :)

•    Vectorise a few of the loops I saw (it surprises me how second nature this has become to me – I used to find the *apply family of functions rather confusing but thankfully not so much any more!).
•    Make use of getURL from the RCurl package (I was getting some mutibyte string problems originally when using readLines but this approach automatically fixed it for me).
•    Add option to make a word-cloud from either the “title” or the “description” fields of the Google Scholar search results
•    Added steaming via the Rstem package because I couldn’t get the Snowball package to install with my version of java. This was important to me because I was getting word clouds with variations of the same word on it e.g. “game”, “games”, “gaming”.
•    Forced use of URLencode() on generation of URLs to automatically avoid problems with search terms like “Baldur’s Gate” which would otherwise fail.

I think that’s pretty much everything I added. Anyway, here’s how it works (link to full code at end of post):

</pre>
<div id="LC198"># #EXAMPLE 1: Display word cloud based on the title field of each Google Scholar search result returned</div>
<div id="LC199"># GScholarXScraper(search.str = "Baldur's Gate", field = "title", write.table = FALSE, stem = TRUE)</div>
<div id="LC200">#</div>
<div id="LC201"># # word freq</div>
<div id="LC202"># # game game 71</div>
<div id="LC203"># # comput comput 22</div>
<div id="LC204"># # video video 13</div>
<div id="LC205"># # learn learn 11</div>
<div id="LC206"># # [TRUNC...]</div>
<div id="LC207"># #</div>
<div id="LC208"># #</div>
<div id="LC209"># # Number of titles submitted = 210</div>
<div id="LC210"># #</div>
<div id="LC211"># # Number of results as retrieved from first webpage = 267</div>
<div id="LC212"># #</div>
<div id="LC213"># # Be aware that sometimes titles in Google Scholar outputs are truncated - that is why, i.e., some mandatory intitle-search strings may not be contained in all titles</div>

<pre>

// image

I think that’s kind of cool and corresponds to what I would expect for a search about the legendary Baldur’s Gate computer role playing game :)  The following is produced if we look at the ‘description’ filed instead of the ‘title’ field:

</pre>

<div id="LC215"># # EXAMPLE 2: Display word cloud based on the description field of each Google Scholar search result returned</div>
<div id="LC216">GScholarXScraper(search.str = "Baldur's Gate", field = "description", write.table = FALSE, stem = TRUE)</div>
<div id="LC217">#</div>
<div id="LC218"># # word freq</div>
<div id="LC219"># # page page 147</div>
<div id="LC220"># # gate gate 132</div>
<div id="LC221"># # game game 130</div>
<div id="LC222"># # baldur baldur 129</div>
<div id="LC223"># # roleplay roleplay 21</div>
<div id="LC224"># # [TRUNC...]</div>
<div id="LC225"># #</div>
<div id="LC226"># # Number of titles submitted = 210</div>
<div id="LC227"># #</div>
<div id="LC228"># # Number of results as retrieved from first webpage = 267</div>
<div id="LC229"># #</div>
<div id="LC230"># # Be aware that sometimes titles in Google Scholar outputs are truncated - that is why, i.e., some mandatory intitle-search strings may not be contained in all titles</div>
<pre>

//image

Not bad. I could see myself using the text mining and word cloud functionality with other projects I’ve been playing with such as Facebook, Google+, Yahoo search pages, Google search pages, Bing search pages… could be fun!

Many thanks again to Kay for making his code publicly available so that I could play with it and improve my programming skill set.

Code:

Full code for GScholarXScraper can be found here: https://github.com/tonybreyal/Blog-Reference-Functions/blob/master/R/GScholarXScraper/GScholarXScraper

Original GSchloarScraper code is here: https://docs.google.com/document/d/1w_7niLqTUT0hmLxMfPEB7pGiA6MXoZBy6qPsKsEe_O0/edit?hl=en_US

Full code for just the XPath scraping function is here: https://github.com/tonybreyal/Blog-Reference-Functions/blob/master/R/googleScholarXScraper/googleScholarXScraper.R

Source:http://www.r-bloggers.com/gscholarxscraper-hacking-the-gscholarscraper-function-with-xpath/

Thursday, 18 December 2014

Data Extraction - A Guideline to Use Scrapping Tools Effectively

So many people around the world do not have much knowledge about these scrapping tools. In their views, mining means extracting resources from the earth. In these internet technology days, the new mined resource is data. There are so many data mining software tools are available in the internet to extract specific data from the web. Every company in the world has been dealing with tons of data, managing and converting this data into a useful form is a real hectic work for them. If this right information is not available at the right time a company will lose valuable time to making strategic decisions on this accurate information.

This type of situation will break opportunities in the present competitive market. However, in these situations, the data extraction and data mining tools will help you to take the strategic decisions in right time to reach your goals in this competitive business. There are so many advantages with these tools that you can store customer information in a sequential manner, you can know the operations of your competitors, and also you can figure out your company performance. And it is a critical job to every company to have this information at fingertips when they need this information.

To survive in this competitive business world, this data extraction and data mining are critical in operations of the company. There is a powerful tool called Website scraper used in online digital mining. With this toll, you can filter the data in internet and retrieves the information for specific needs. This scrapping tool is used in various fields and types are numerous. Research, surveillance, and the harvesting of direct marketing leads is just a few ways the website scraper assists professionals in the workplace.

Screen scrapping tool is another tool which useful to extract the data from the web. This is much helpful when you work on the internet to mine data to your local hard disks. It provides a graphical interface allowing you to designate Universal Resource Locator, data elements to be extracted, and scripting logic to traverse pages and work with mined data. You can use this tool as periodical intervals. By using this tool, you can download the database in internet to you spread sheets. The important one in scrapping tools is Data mining software, it will extract the large amount of information from the web, and it will compare that date into a useful format. This tool is used in various sectors of business, especially, for those who are creating leads, budget establishing seeing the competitors charges and analysis the trends in online. With this tool, the information is gathered and immediately uses for your business needs.

Another best scrapping tool is e mailing scrapping tool, this tool crawls the public email addresses from various web sites. You can easily from a large mailing list with this tool. You can use these mailing lists to promote your product through online and proposals sending an offer for related business and many more to do. With this toll, you can find the targeted customers towards your product or potential business parents. This will allows you to expand your business in the online market.

There are so many well established and esteemed organizations are providing these features free of cost as the trial offer to customers. If you want permanent services, you need to pay nominal fees. You can download these services from their valuable web sites also.

Source: http://ezinearticles.com/?Data-Extraction---A-Guideline-to-Use-Scrapping-Tools-Effectively&id=3600918

Tuesday, 16 December 2014

Benefits of Predictive Analytics and Data Mining Services

Predictive Analytics is the process of dealing with variety of data and apply various mathematical formulas to discover the best decision for a given situation. Predictive analytics gives your company a competitive edge and can be used to improve ROI substantially. It is the decision science that removes guesswork out of the decision-making process and applies proven scientific guidelines to find right solution in the shortest time possible.

Predictive analytics can be helpful in answering questions like:

•    Who are most likely to respond to your offer?
•    Who are most likely to ignore?
•    Who are most likely to discontinue your service?
•    How much a consumer will spend on your product?
•    Which transaction is a fraud?
•    Which insurance claim is a fraudulent?
•    What resource should I dedicate at a given time?

Benefits of Data mining include:

•    Better understanding of customer behavior propels better decision
•    Profitable customers can be spotted fast and served accordingly
•    Generate more business by reaching hidden markets
•    Target your Marketing message more effectively
•    Helps in minimizing risk and improves ROI.
•    Improve profitability by detecting abnormal patterns in sales, claims, transactions etc
•    Improved customer service and confidence
•    Significant reduction in Direct Marketing expenses

Basic steps of Predictive Analytics are as follows:

•    Spot the business problem or goal
•    Explore various data sources such as transaction history, user demography, catalog details, etc)
•    Extract different data patterns from the above data
•    Build a sample model based on data & problem
•    Classify data, find valuable factors, generate new variables
•    Construct a Predictive model using sample
•    Validate and Deploy this Model

Standard techniques used for it are:

•    Decision Tree
•    Multi-purpose Scaling
•    Linear Regressions
•    Logistic Regressions
•    Factor Analytics
•    Genetic Algorithms
•    Cluster Analytics
•    Product Association

Should you have any queries regarding Data Mining or Predictive Analytics applications, please feel free to contact us. We would be pleased to answer each of your queries in detail.

Source:http://ezinearticles.com/?Benefits-of-Predictive-Analytics-and-Data-Mining-Services&id=4766989

Monday, 15 December 2014

RAM Scraping a New Old Favorite For Hackers

Some of the best stories involve a conflict with an old enemy: a friend-turned-foe, long thought dead, returning from the grave for violent retribution; an ancient order of dark siders from the distant reaches of the galaxy, hiding in plain sight and waiting to seize power for themselves; a dark lord thought destroyed millennia ago, only to rise again and seek his favorite piece of jewelry.  The list goes on.

Granted, 2011 isn’t quite “millennia,” and this story isn’t meant for entertainment, but the old foe in this instance is nonetheless dangerous in its own right.  That is the year when RAM scraping malware first made major headlines: originating as an advanced version of the Trackr malware, controlled through a botnet, it was discovered in the compromised Point of Sale (POS) systems of a university and several hotels.  And while it seemed recently that this method had dwindled in popularity, the Target and other retail breaches saw it return with a vengeance.  With 110 million Target customers having their information compromised, it was easily one the largest incidents involving memory scrapers.

How does it work?  First, the malware has to be introduced into the POS network, which can happen via any machine that is connected to the network, or unsecured wireless networks.  Even with firewalls, an infected laptop could serve as a vector.  Once installed, the malware can hide in the shadows, employing encryption or antivirus-avoiding tools to prevent its identification until it’s ready to strike.  Then, when a customer’s card gets used at a POS machine, the data contained within—name, card number, security code, etc.—gets sent to the system memory.  “There is that opportunity to steal the credit card information when it is in memory, perhaps even before your payment has even been authorized, and the data hasn't even been written to the hard drive yet,” says security researcher Graham Cluley.

So, why not encrypt the system’s memory, when it’s at its most vulnerable?  Not that simple, sadly: “No matter how strong your encryption is, if the system needs to process data or process the code, everything needs to be decrypted in memory,” Chris Elisan, principal malware scientist at security firm RSA, explained to Dark Reading.

There are certain steps a company can take, of course, and should take, to reduce the risk.  Strong passwords to access the POS machines, firewalls to isolate the POS network from the Internet, disabling remote access to POS systems, to name a few.  All the same, while these measures are vital and should be used, I don’t think, in light of recent breaches, they are sufficient.  Now, I wrote a short time ago about the impending October 2014 deadline imposed by the credit card industry, regarding the systematic switch to chipped credit card technology; adopting this standard will definitely assist in eradicating this problem.  But, until such a time when a widespread implementation of new systems comes about, always be vigilant to protect your data from attack, because what’s old is new again, and a colossal data breach is a story consumers are liable to seek financial restitution for.

Source:http://www.netlib.com/blog/application-security/RAM-Scraping-a-New-Old-Favorite-For-Hackers.asp

Friday, 12 December 2014

Microfinance Data Scraping

I went to the Datakind‘s New York Datadive last November and met the Microfinance Information Exchange (MIX), a group that ‘delivers data services, analysis, research and business information on the institutions that provide financial services to the world’s poor’. They wanted to see whether web-scraping could save them from manually gathering data. So fellow divers and I showed MIX the utility of web-scraping. Over the course of a day, about six people scraped data about microfinance institutions from a bunch of websites, saving MIX an estimated year of manual data entry.

Over the past few months, I worked further with MIX to study who has access to what sorts of financial services. DataKind just put up our blog post about the project. Read the post, or just look at the map and explore the data.

Source:https://blog.scraperwiki.com/2012/05/microfinance-data-scraping/

Thursday, 11 December 2014

Scraping Webmaster Tools with FMiner

The biggest problem (after the problem with their data quality) I am having with Google Webmaster Tools is that you can’t export all the data for external analysis. Luckily the guys from the FMiner.com web scraping tool contacted me a few weeks ago to test their tool. The problem with Webmaster Tools is that you can’t use web based scrapers and all the other screen scraping software tools were not that good in the steps you need to take to get to the data within Webmaster Tools. The software is available for Windows and Mac OSX users.

FMiner is a classical screen scraping app, installed on your desktop. Since you need to emulate real browser behaviour, you need to install it on your desktop. There is no coding required and their interface is visual based which makes it possible to start scraping within minutes. Another possibility I like is to upload a set of keywords, to scrape internal search engine result pages for example, something that is missing in a lot of other tools. If you need to scrape a lot of accounts, this tool provides multi-browser crawling which decreases the time needed.

This tool can be used for a lot of scraping jobs, including Google SERPs, Facebook Graph search, downloading files & images and collecting e-mail addresses. And for the real heavy scrapers, they also have built in a captcha solving API system so if you want to pass captchas while scraping, no problem.

Below you can find an introduction to the tool, with one of their tutorial video’s about scraping IMDB.com:

More basic and advanced tutorials can be found on their website: Fminer tutorials. Their tutorials show you a range of simple and complex tasks and how to use their software to get the data you need.

Guide for Scraping Webmaster Tools data

The software is capable of dealing with JavaScript and AJAX, one of the main requirements to scrape data from within Google Webmaster Tools.

Step 1: The first challenge is to login into webmaster tools. After opening a new project, first browse to https://www.google.com/webmasters/ and select the Recording button in the upper left corner.

fminer01

After browsing to this page, a goto action appears in the left panel. Click on this button and look for the “Action Options” button at the bottom of that panel. Tick the option Clear cookies before do it to avoid problems if you are already logged in for example.

fminer06

Step 2: Click the “Sign in Webmaster Tools” button. You will notice the Macro designer overview on the left registered a click as the first step.

fminer03

Step 3: Fill in your Google username and password. In the designer panel you will see the two Fill actions emerging.

fminer04

Step 4: After this step you should add some waiting time to be sure everything is fully loaded. Use the second button on the right side above the Macro Designer panel to add an action. 2000 milliseconds (2 seconds :)) will do the job.

fminer07

fminer08

Step 5: Browse to the account of which you want to export the data from

fminer05

Step 6: Browse to the specific pages of which you want the data scraped

fminer09

Step 7:Scrape the data from the tables as shown in the video

Congratulations, now you are able to scrape data from Google Webmaster Tools :)

Step 8: One of the things I use it for is pulling the search query data per keyword, which you normally can’t export. To do that, you have to use a right mouse click on the keyword, which opens a menu with options. Go to open links recursively and select normal. This will loop through all the keywords.

fminer10

Step 9: This video will show you how to make use of the pagination elements to loop through all the pages:

You can also download the following file, which has a predefined set of actions to login in WMT and download the keywords, impressions and clicks: google_webmaster_tools_login.fmpx. Open the file and update the login details by clicking on those action buttons and insert your own Google account details.

Automating and scheduling scrapers

For people that want to automate and regularly download the data, you can setup a Scheduler config and within the project settings you can setup the program to send an e-mail after completion of the crawl:

Source: http://www.notprovided.eu/scraping-webmaster-tools-fminer/

Monday, 8 December 2014

Web scraping tutorial

There are three ways to access a website data. One is through a browser, the other is using a API (if the site provides one) and the last by parsing the web pages through code. The last one also known as Web Scraping is a technique of extracting information from websites using specially coded programs.

In this post we will take a quick look at writing a simple scraperusing the simplehtmldom library. But before we continue a word of caution:

Writing screen scrapers and spiders that consume large amounts of bandwidth, guess passwords, grab information from a site and use it somewhere else may well be a violation of someone’s rights and will eventually land you in trouble. Before writing  a screen scraper first see if the website offers an RSS feed or an API for the data you are looking. If not and you have to use a scraper, first check the websites policies regarding automated tools before proceeding.

Now that we have got all the legalities out of the way, lets start with the examples.

1. Installing simplehtmldom.

Simplehtmldom is a PHP library that facilitates the process of creating web scrapers. It is a HTML DOM parser written in PHP5 that let you manipulate HTML in a quick and easy way. It is a wonderful library that does away with the messy details of regular expressions and uses CSS selector style DOM access like those found in jQuery.

First download the library from sourceforge.  Unzip the library in you PHP includes directory or a directory where you will be testing the code.

Writing our first scraper.

Now that we are ready with the tools, lets write our first web scraper. For our initial idea let us see how to grab the sponsored links section from a google search page.

There are three ways to access a website data. One is through a browser, the other is using a API (if the site provides one) and the last by parsing the web pages through code. The last one also known as Web Scraping is a technique of extracting information from websites using specially coded programs.

In this post we will take a quick look at writing a simple scraperusing the simplehtmldom library. But before we continue a word of caution:

Writing screen scrapers and spiders that consume large amounts of bandwidth, guess passwords, grab information from a site and use it somewhere else may well be a violation of someone’s rights and will eventually land you in trouble. Before writing  a screen scraper first see if the website offers an RSS feed or an API for the data you are looking. If not and you have to use a scraper, first check the websites policies regarding automated tools before proceeding.

Source: http://www.codediesel.com/php/web-scraping-in-php-tutorial/

Thursday, 11 September 2014

Web Data Extraction / Scraping Data from Kitco Inc. Text Only Market Page

I wish to capture data from

<html>
<head>
<title>Text Only Market Page</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#FFFFFF">
<br><br>
<pre>
<b><font size=6>
  Kitco Inc.

  Text Only Market Page</font></b>

    <a href="http://www.kitco.com/market/">Graphic version of this page</a>

    <a href="http://www.kitco.com/market/LFrate.html">Precious Metals Lease Rates</a> 
    <a href="http://www.kitco.com/gold.londonfix.html">Historical Price Data</a> 
    <a href="http://www.kitco.com/market/marketnews.html">Precious Metals News Headlines</a>

    <font size=4><b><a href="https://online.kitco.com/bullion/completelist_USD.html#gold">Buy gold and silver online direct from Kitco!</a>
   Live quotes for all bullion products.</b></font>


   --------------------------------------------------------------------------------
   London Fix          GOLD          SILVER       PLATINUM           PALLADIUM
                   AM       PM                  AM       PM         AM       PM
   --------------------------------------------------------------------------------
   Jun 19,2012   1628.50   1625.50   28.8100   1486.00   1486.00   629.00   634.00 
   Jun 18,2012   1623.50   1615.50   28.4300   1486.00   1484.00   626.00   628.00 
   --------------------------------------------------------------------------------


                  New York Spot Price
                MARKET IS OPEN
            Will close in 4 hour 25 minutes
   ----------------------------------------------------------------------
   Metals          Bid        Ask           Change        Low       High
   ----------------------------------------------------------------------
   Gold         1619.80     1620.80     -8.90  -0.55%    1616.60  1632.70
   Silver         28.46       28.56     -0.28  -0.97%      28.24    28.95
   Platinum     1479.00     1489.00      0.00   0.00%    1476.00  1500.00
   Palladium     627.00      632.00      0.00   0.00%     622.00   639.00
   ----------------------------------------------------------------------
   Last Update on Jun 19, 2012 at 12:50.59
   ----------------------------------------------------------------------


                Asia / Europe Spot Price
                MARKET IS OPEN
            Will close in 4 hours 25 minutes
   ----------------------------------------------------------------------
   Metals                      Bid          Ask      Change from NY close
   ----------------------------------------------------------------------
   Gold                      1619.80      1620.80     -8.90   -0.55%
   Silver                      28.46        28.56     -0.28   -0.97%
   Platinum                  1479.00      1489.00     +0.00   +0.00%
   Palladium                  627.00       632.00     +0.00   +0.00%
   ----------------------------------------------------------------------
   Last Update on Jun 19, 2012 at 12:50.59
   ----------------------------------------------------------------------


<b>   File created on Tue Jun 19 12:51:04 2012</b>


        <style type="text/css"><!--
 #main_container_footer {width:100%;text-align: center;}
    #main_container_footer #footer_container {width:auto; margin:25px auto 25px auto;}
    #main_container_footer #footer_container ul {margin:0; padding:0;}
    #main_container_footer #footer_container ul li {float:left; display:inline; list-style:none; padding:0 8px; font-family:Verdana, Arial, Helvetica, sans-serif; font-size:12px; color:#000; border-right:1px #000 solid;}
    #main_container_footer #footer_container ul li a {font-family:Verdana, Arial, Helvetica, sans-serif; font-size:12px; color:#000; text-decoration:underline; font-weight:normal;}
    #main_container_footer #footer_container ul li a:hover {color:#ac1a2f; text-decoration:none; font-weight:normal;}
    #main_container_footer #footer_container ul li.no_border {border:0px;}
--></style>
  <table border="0" cellspacing="0" cellpadding="0"><tr><td>
 <div id="main_container_footer">
        <div id="footer_container">
            <ul>
                <li class="no_border"><script type="text/javascript">
copyright=new Date();
update=copyright.getFullYear();
document.write("&copy; "+ update + " Kitco Metals Inc.");
</script></li>
                <li><a href="https://corp.kitco.com/index.html">About Us</a></li>
                <li><a href="http://www.kitco.com/TermsofUse/" target="_top" onclick="Window_open(this.href,'KITCO','top=120,left=250,width=500,height=350'); return false">Website Terms of Use</a></li>
                <li><a href="https://online.kitco.com/help/privacy_policy.html" target="_top" onclick="Window_open(this.href,'KITCO','top=120,left=250,width=500,height=350'); return false">Privacy Policy</a></li>
                <li><a href="http://www.kitco.com/ads/">Advertise With Us</a></li>
                <li><a href="https://corp.kitco.com/en/corporate_culture.html">Careers</a></li>
                <li><a href="https://corp.kitco.com/en/contact.html" target="_top" onclick="Window_open(this.href,'KITCO','top=120,left=250,width=500,height=350'); return false">Contact Us</a></li>
                <li class="no_border"><a href="https://corp.kitco.com/en/feedback.html" target="_top" onclick="Window_open(this.href,'KITCO','top=120,left=250,width=500,height=350'); return false">Feedback</a></li>
            </ul>
        </div>
    </div> 

    </td></tr></table><br /><br />
<script language="JavaScript" type="text/javascript">
<!--
function Window_open (Address) {
  NewWindow = window.open(Address, "Popup", "width=695,height=600,left=100,top=200,resizable=yes,scrollbars=yes");
  NewWindow.focus();
}
// -->
</script>
 <!-- img src="http://www.kitco.com/scripts/counter/counter.pl?txtonlyE.txt" width="1" height="1" -->
<!-- Google-Analytics Code-->
<script type="text/javascript">
  var _gaq = _gaq || [];
  _gaq.push(['_setAccount', 'UA-4074364-3']);
  _gaq.push(['_trackPageview']);

  (function() {
    var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
    ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
    var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
  })();
</script>
</body>
</html>

More specifically, I am looking to capture the following data:

--------------------------------------------------------------------------------
London Fix          GOLD          SILVER       PLATINUM           PALLADIUM
               AM       PM                  AM       PM         AM       PM
--------------------------------------------------------------------------------
Jun 19,2012   1628.50   NA        28.8100   1486.00   1486.00   629.00   634.00 
Jun 18,2012   1623.50   1615.50   28.4300   1486.00   1484.00   626.00   628.00 
--------------------------------------------------------------------------------

Does anybody have any suggestions how I can do this using PHP?



1 Answer


Quick and dirty regex method:

$data = file_get_contents('http://www.kitco.com/texten/texten.html');
preg_match_all('/([A-Z]{3,5}\s+[0-9]{1,2},[0-9]{4}\s+([0-9.NA]{2,10}\s+){1,7})/si',$data,$result);

$records = array();
foreach($result[1] as $date) {
    $temp = preg_split('/\s+/',$date);
    $index = array_shift($temp);
    $index.= array_shift($temp);
    $records[$index] = implode(',',$temp);
}
print_R($records);

Note, you'd probably want to add some validation, etc.


Source: http://stackoverflow.com/questions/11103001/web-data-extraction-scraping-data-from-kitco-inc-text-only-market-page

Monday, 8 September 2014

Scraping webdata from a website that loads data in a streaming fashion

I'm trying to scrape some data off of the FEC.gov website using python for a project of mine. Normally I use python

mechanize and beautifulsoup to do the scraping.

I've been able to figure out most of the issues but can't seem to get around a problem. It seems like the data is

streamed into the table and mechanize.Browser() just stops listening.

So here's the issue: If you visit http://query.nictusa.com/cgi-bin/can_ind/2011_P80003338/1/A ... you get the first 500

contributors whose last name starts with A and have given money to candidate P80003338 ... however, if you use

browser.open() at that url all you get is the first ~5 rows.

I'm guessing its because mechanize isn't letting the page fully load before the .read() is executed. I tried putting a

time.sleep(10) between the .open() and .read() but that didn't make much difference.

And I checked, there's no javascript or AJAX in the website (or at least none are visible when you use the 'view-

source'). SO I don't think its a javascript issue.

Any thoughts or suggestions? I could use selenium or something similar but that's something that I'm trying to avoid.

-Will

2 Answers

Why not use an html parser like lxml with xpath expressions.

I tried

>>> import lxml.html as lh
>>> data = lh.parse('http://query.nictusa.com/cgi-bin/can_ind/2011_P80003338/1/A')
>>> name = data.xpath('/html/body/table[2]/tr[5]/td[1]/a/text()')
>>> name
[' AABY, TRYGVE']
>>> name = data.xpath('//table[2]/*/td[1]/a/text()')
>>> len(name)
500
>>> name[499]
' AHMED, ASHFAQ'
>>>



Similarly, you can create xpath expression of your choice to work with.


Source: http://stackoverflow.com/questions/9435512/scraping-webdata-from-a-website-that-loads-data-in-a-streaming-

fashion

How can I circumvent page view limits when scraping web data using Python?


I am using Python to scrape US postal code population data from http:/www.city-data.com, through this directory: http://www.city-data.com/zipDir.html. The specific pages I am trying to scrape are individual postal code pages with URLs like this: http://www.city-data.com/zips/01001.html. All of the individual zip code pages I need to access have this same URL Format, so my script simply does the following for postal_code in range:

    Creates URL given postal code
    Tries to get response from URL
    If (2), Check the HTTP of that URL
    If HTTP is 200, retrieves the HTML and scrapes the data into a list
    If HTTP is not 200, pass and count error (not a valid postal code/URL)
    If no response from URL because of error, pass that postal code and count error
    At end of script, print counter variables and timestamp

The problem is that I run the script and it works fine for ~500 postal codes, then suddenly stops working and returns repeated timeout errors. My suspicion is that the site's server is limiting the page views coming from my IP address, preventing me from completing the amount of scraping that I need to do (all 100,000 potential postal codes).

My question is as follows: Is there a way to confuse the site's server, for example using a proxy of some kind, so that it will not limit my page views and I can scrape all of the data I need?

Thanks for the help! Here is the code:

##POSTAL CODE POPULATION SCRAPER##

import requests

import re

import datetime

def zip_population_scrape():

    """
    This script will scrape population data for postal codes in range
    from city-data.com.
    """
    postal_code_data = [['zip','population']] #list for storing scraped data

    #Counters for keeping track:
    total_scraped = 0
    total_invalid = 0
    errors = 0


    for postal_code in range(1001,5000):

        #This if statement is necessary because the postal code can't start
        #with 0 in order for the for statement to interate successfully
        if postal_code <10000:
            postal_code_string = str(0)+str(postal_code)
        else:
            postal_code_string = str(postal_code)

        #all postal code URLs have the same format on this site
        url = 'http://www.city-data.com/zips/' + postal_code_string + '.html'

        #try to get current URL
        try:
            response = requests.get(url, timeout = 5)
            http = response.status_code

            #print current for logging purposes
            print url +" - HTTP:  " + str(http)

            #if valid webpage:
            if http == 200:

                #save html as text
                html = response.text

                #extra print statement for status updates
                print "HTML ready"

                #try to find two substrings in HTML text
                #add the substring in between them to list w/ postal code
                try:           

                    found = re.search('population in 2011:</b> (.*)<br>', html).group(1)

                    #add to # scraped counter
                    total_scraped +=1

                    postal_code_data.append([postal_code_string,found])

                    #print statement for logging
                    print postal_code_string + ": " + str(found) + ". Data scrape successful. " + str(total_scraped) + " total zips scraped."
                #if substrings not found, try searching for others
                #and doing the same as above   
                except AttributeError:
                    found = re.search('population in 2010:</b> (.*)<br>', html).group(1)

                    total_scraped +=1

                    postal_code_data.append([postal_code_string,found])
                    print postal_code_string + ": " + str(found) + ". Data scrape successful. " + str(total_scraped) + " total zips scraped."

            #if http =404, zip is not valid. Add to counter and print log        
            elif http == 404:
                total_invalid +=1

                print postal_code_string + ": Not a valid zip code. " + str(total_invalid) + " total invalid zips."

            #other http codes: add to error counter and print log
            else:
                errors +=1

                print postal_code_string + ": HTTP Code Error. " + str(errors) + " total errors."

        #if get url fails by connnection error, add to error count & pass
        except requests.exceptions.ConnectionError:
            errors +=1
            print postal_code_string + ": Connection Error. " + str(errors) + " total errors."
            pass

        #if get url fails by timeout error, add to error count & pass
        except requests.exceptions.Timeout:
            errors +=1
            print postal_code_string + ": Timeout Error. " + str(errors) + " total errors."
            pass


    #print final log/counter data, along with timestamp finished
    now= datetime.datetime.now()
    print now.strftime("%Y-%m-%d %H:%M")
    print str(total_scraped) + " total zips scraped."
    print str(total_invalid) + " total unavailable zips."
    print str(errors) + " total errors."



Source: http://stackoverflow.com/questions/25452798/how-can-i-circumvent-page-view-limits-when-scraping-web-data-using-python

Sunday, 7 September 2014

Web data scraping (online news comments) with Scrapy (Python)

Since you seem like the try-first ask-question later type (that's a very good thing), I won't give you an answer, but a

(very detailed) guide on how to find the answer.

The thing is, unless you are a yahoo developer, you probably don't have access to the source code you're trying to

scrape. That is to say, you don't know exactly how the site is built and how your requests to it as a user are being

processed on the server-side. You can, however, investigate the client-side and try to emulate it. I like using Chrome

Developer Tools for this, but you can use others such as FF firebug.

So first off we need to figure out what's going on. So the way it works, is you click on the 'show comments' it loads

the first ten, then you need to keep clicking for the next ten comments each time. Notice, however, that all this

clicking isn't taking you to a different link, but lively fetches the comments, which is a very neat UI but for our

case requires a bit more work. I can tell two things right away:

    They're using javascript to load the comments (because I'm staying on the same page).
    They load them dynamically with AJAX calls each time you click (meaning instead of loading the comments with the

page and just showing them to you, with each click it does another request to the database).

Now let's right-click and inspect element on that button. It's actually just a simple span with text:

<span>View Comments (2077)</span>

By looking at that we still don't know how that's generated or what it does when clicked. Fine. Now, keeping the

devtools window open, let's click on it. This opened up the first ten. But in fact, a request was being made for us to

fetch them. A request that chrome devtools recorded. We look in the network tab of the devtools and see a lot of

confusing data. Wait, here's one that makes sense:

http://news.yahoo.com/_xhr/contentcomments/get_comments/?content_id=42f7f6e0-7bae-33d3-aa1d-

3dfc7fb5cdfc&_device=full&count=10&sortBy=highestRated&isNext=true&offset=20&pageNumber=2&_media.modules.content_commen

ts.switches._enable_view_others=1&_media.modules.content_comments.switches._enable_mutecommenter=1&enable_collapsed_com

ment=1

See? _xhr and then get_comments. That makes a lot of sense. Going to that link in the browser gave me a JSON object

(looks like a python dictionary) containing all the ten comments which that request fetched. Now that's the request you

need to emulate, because that's the one that gives you what you want. First let's translate this to some normal reqest

that a human can read:

go to this url: http://news.yahoo.com/_xhr/contentcomments/get_comments/
include these parameters: {'_device': 'full',
          '_media.modules.content_comments.switches._enable_mutecommenter': '1',
          '_media.modules.content_comments.switches._enable_view_others': '1',
          'content_id': '42f7f6e0-7bae-33d3-aa1d-3dfc7fb5cdfc',
          'count': '10',
          'enable_collapsed_comment': '1',
          'isNext': 'true',
          'offset': '20',
          'pageNumber': '2',
          'sortBy': 'highestRated'}

Now it's just a matter of trial-and-error. However, a few things to note here:

    Obviously the count is what decides how many comments you're getting. I tried changing it to 100 to see what

happens and got a bad request. And it was nice enough to tell me why - "Offset should be multiple of total rows". So

now we understand how to use offset

    The content_id is probably something that identifies the article you are reading. Meaning you need to fetch that

from the original page somehow. Try digging around a little, you'll find it.

    Also, you obviously don't want to fetch 10 comments at a time, so it's probably a good idea to find a way to fetch

the number of total comments somehow (either find out how the page gets it, or just fetch it from within the article

itself)

    Using the devtools you have access to all client-side scripts. So by digging you can find that that link to

/get_comments/ is kept within a javascript object named YUI. You can then try to understand how it is making the

request, and try to emulate that (though you can probably figure it out yourself)

    You might need to overcome some security measures. For example, you might need a session-key from the original

article before you can access the comments. This is used to prevent direct access to some parts of the sites. I won't

trouble you with the details, because it doesn't seem like a problem in this case, but you do need to be aware of it in

case it shows up.

    Finally, you'll have to parse the JSON object (python has excellent built-in tools for that) and then parse the

html comments you are getting (for which you might want to check out BeautifulSoup).

As you can see, this will require some work, but despite all I've written, it's not an extremely complicated task

either.

So don't panic.

It's just a matter of digging and digging until you find gold (also, having some basic WEB knowledge doesn't hurt).

Then, if you face a roadblock and really can't go any further, come back here to SO, and ask again. Someone will help

you.


Source: http://stackoverflow.com/questions/20218855/web-data-scraping-online-news-comments-with-scrapy-python

Saturday, 6 September 2014

A good web data extraction/screen scraper program?

I need to capture product data from a site on a regular basis and wondered if any one knows of a good software program? I've trialed Mozenda but its a monthly subscription and pricey in the long term. Obviously something thats free would be best but I don't mind paying either. Just need a decent program thats reliable and doesn't require much programming knowledge.

You can try ScraperWiki.com if you know python.

I've experimented with Screen-Scraper and found it easy to use. The application comes in multiple versions: basic (which is free), professional, and enterprise. Also, multiple platforms are supported.

Hire a programmer to do it so that there is only a one off cost. I often see similar projects on freelancing websites like Elance and oDesk.

I really like iMacros. You can give it a test drive to see if it meets your needs with the totally free Firefox extension (there's also IE versions), but there are also more full featured application and "server" versions that have more features and ability to do thing in an unattended manner.

Here are some other alternatives to consider:

    License the data from the provider. Call em up and ask 'em.

    Use Amazon Mechanical Turk to get humans to copy and paste and format it for ya. They are cheap.

    For automation, it depends on how complicated the HTML is and how often it changes. You could use Excel's Web Data Import if it's really simple.


You can use irobot from IRobotSoft, which is totally free, and provides more functionalityies than other paid software. Watch demos here http://irobotsoft.com/help/ for how simple it is.

Questions on their forum were answered very quickly.


Source: http://stackoverflow.com/questions/2334164/a-good-web-data-extraction-screen-scraper-program

Thursday, 4 September 2014

How to login to website and extract data using PHP [closed]


I have installed the tiny tiny rss on to my computer (Windows) and also have Xampp installed (localhost).

I want to be able to use PHP to extract data from the Tiny tiny RSS webpage.

I have tried this it which just opens the front page:

<?php
$homepage = file_get_contents('my install tiny tiny rss url');
echo $homepage;
?>

But how do I login and extract the data.

You can use cURL to send post data and headers. To login you need to replicate the exact data exchange between the client and the server.


SOurce: http://stackoverflow.com/questions/20611918/how-to-login-to-website-and-extract-data-using-php

Is it ok to scrape data from Google results?


I'd like to fetch results from Google using curl to detect potential duplicate content. Is there a high risk of being banned by Google?

Google will eventually block your IP when you exceed a certain amount of requests.



Google disallows automated access in their TOS, so if you accept their terms you would break them.

That said, I know of no lawsuit from Google against a scraper. Even Microsoft scraped Google, they powered their search engine Bing with it. They got caught in 2011 red handed :)

There are two options to scrape Google results:

1) Use their API

    You can issue around 40 requests per hour You are limited to what they give you, it's not really useful if you want to track ranking positions or what a real user would see. That's something you are not allowed to gather.

    If you want a higher amount of API requests you need to pay.
    60 requests per hour cost 2000 USD per year, more queries require a custom deal.

2) Scrape the normal result pages

    Here comes the tricky part. It is possible to scrape the normal result pages. Google does not allow it.
    If you scrape at a rate higher than 15 keyword requests per hour you risk detection, higher than 20/h will get you blocked from my experience.
    By using multiple IPs you can up the rate, so with 100 IP addresses you can scrape up to 2000 requests per hour. (50k a day)
    There is an open source search engine scraper written in PHP at http://scraping.compunect.com It allows to reliable scrape Google, parses the results properly and manages IP addresses, delays, etc. So if you can use PHP it's a nice kickstart, otherwise the code will still be useful to learn how it is done.


Source: http://stackoverflow.com/questions/22657548/is-it-ok-to-scrape-data-from-google-results

Data Scraping from PDF and Excel

I am doing a little data scraping, There are 3 types of file from which i am scraping data.

1- HTML
2- PDF
3- Excel(xls)

For HTML i am comfortable, i am using HTML Agility for that.

For PDF and excel i need suggestions from anyone.



Concerning Excel. If you are in a MS environment you can either do Office Automation or use OLEDB. In a Java

environment look at Apache POI.

EDIT: Concerning PDF in Java try Apache PDFBox . Can also work in .NET using IKVM

I can recommend Cogniview's PDF2XL, a reasonably inexpensive commercial product, to extract data from tables in PDF

files into Excel. We have used it with great success.

HTML Agility is a library. Its good to use. But then, why do you need separate tools for different data extraction

purposes? Use Automation Anywhere to extract data from any source. As far as I know, it would work for all the three

sources you have specified. Google it.

Source: http://stackoverflow.com/questions/3147803/data-scraping-from-pdf-and-excel

Tuesday, 2 September 2014

Need to pull data from a website…web query? macro?


I have a list of every DOT # (Dept. of Trans.) in the country. I want to find out insurance effective date for each one of these companies. If you go to http://li-public.fmcsa.dot.gov --> "continue" --> then from the dropdown select "carrier search" and hit "go" it'll take you to a search form (that is the only way to get to this screen).

From there, you can input a DOT # X (use 61222 as an example) and it'll bring you to another screen. Click "view report in HTML" and then down on the bottom you'll see "Active/Pending Insurance". I want to pull the "effective date" from that page and stick it in the spreadsheet next to the DOT # X that I already know.

Of the thousands of DOT #'s in my list, not all will have filings on this website, if that makes a difference.

Can this be done with a Macro or Excel Web Query? I know I probably sound like a total novice, but I'd appreciate any help I could get.

Can you do it? Frankly even if you could you'd lock up the spreadsheet while it's doing that processing. And in the end, how would you handle an error half-way through?

I'd not do this in a client-facing application. This sounds more like something to do in server-side app that can do the processing and gather the information in a more controlled environment. Then you Excel spreadsheet could query that app and get the information in one fell swoop. Error handling is much simpler and you don't end up sitting there staring at Excel why it works its way through thousands of web sites. It was not built to do that elegantly.

What do you write the web service I'm describing in? Well it depends on your preference. Me, I'd write it in Ruby on Rails since it can easily handle the scraping aspect of the task and can report the data out easily as well. But it really falls back to whatever you're most comfortable coding in.


Source: http://stackoverflow.com/questions/15286429/need-to-pull-data-from-a-website-web-query-macro

How to extract data from web 2.0 graphs using a scraper


I have recently come across a web page containing a graph object that displays the (x, y) values on the object as the

mouse is rolled across it. Is there any way to automate the extraction of this data?

How is the graph data loaded? If embedded in the page source then you can extract it with xpath or regex. Else use

Firebug to see how it is loaded.



You will need a solution that works inside the web browser, so the AJAX/Javascript is properly rendered.

I have used iMacros with good success for web scraping in the past. There are free/open-source and "PRO" paid editions

(comparison table here).

Another option is always to custom code something with the Microsoft webbrowser control.


Source: http://stackoverflow.com/questions/3980774/how-to-extract-data-from-web-2-0-graphs-using-a-scraper

Monday, 1 September 2014

Legality of Web Scraping vs Normal Use


I know the topic of web scraping has been discussed before (example), and I understand it's a bit of a grey area depending on a lot of factors (e.g. website's terms of use).

What I'd like to ask is: how is web scraping any different from (a) how we access the webpage via a web browser, and (b) how web crawlers (e.g. Google) download and index webpages?

Without knowing the legal background, I can't help but think that they're all just HTTP requests. If web scraping is illegal, then so should crawling and indexing (for instance be illegal).

Of course if your program is hitting the server so hard that it causes a denial of service, it's a different story altogether... my point is simply accessing and using data that is already open to the public.



I know this is a dead thread, but it would be nice to place some legal implications here due to its ranking in my Google Search. I cannot help but figure I am not the only one who searches like I do.

Legally, in the US, there are a few factors that seem to be important.

    Are you doing anything that is akin to hacking or gaining unauthorized access via the Computer Fraud and Abuse Act. Exploiting vulnerabilities and passing SQL in the URL to open a database no matter how bad the idiot programming like that was is illegal with a 15 year sentence (see the cases where an individual exploited security vulnerabilities in Verizon). Also, add a time out even if you round robin or use proxies. DDoS attacks are attacks. 1000 requests per second can shut down a lot of servers providing public information. The result here is up to 15 years in jail.

    Copyright Law: As mentioned, pure replication of data is illegal. Even 4% replication has been deemed a breach. With the recent gutting of the DMCA, a person is even more vulnerable to civil and criminal penalties.

    Trespass and Chattels: The following from wikipedia says it all.

    U.S. courts have acknowledged that users of "scrapers" or "robots" may be held liable for committing trespass to chattels,[5][6] which involves a computer system itself being considered personal property upon which the user of a scraper is trespassing. The best known of these cases, eBay v. Bidder's Edge, resulted in an injunction ordering Bidder's Edge to stop accessing, collecting, and indexing auctions from the eBay web site.

    Paywalls and Product: When going behind paywalls and breaching contract by clicking an agreement not to do something and then doing it, you add fuel to the protection of negligence v. willingness [an issue for damages and penalties not guilt] in civil and any criminal trials. (sorry originally wanted to say ignorance but it really isn't a defense)

    International: EU law and other law is way more lax. Corporations with big budgets dominate our legal landscape. They control the system in a very real way with their $$$.

Basically, get public information and information that is available without going behind a pay wall. Think like a user of the internet and combine a bunch of sources into a unique product. Don't just 'steal' an entire site (it isn't really stealing if it is a government site that offers public data especially for download but is if you download all or even more than a couple of the listings on ebay). Read the terms and conditions to know who actually owns the content.

Here are a few examples. Trulia owns its information but you could use it to go to an agents website and collect a legal amount of information. The legal amount is determinable. However, a public MLS listing lookup site with no agreement or terms and offering data to the public is fair game. The MLS numbers lists, however, are normally not fair game.

If a researcher can get to data, so can you. If a researcher needs permission, so do you. A computer is like having a million corporate researchers at your disposal.

AS for company policy, it is usually used internally to shield from liability and serves as a warning but is not entirely enforceable. The legal parts letting you know about copyrights and such are and usually are supposed to be known by everyone. Complete ignorance is not a legal protection. It does provide a ground set of rules. Be nice, or get banned is that message as far as I know.

My personal strategy is to start with public data and embellish it within legal means.


Source: http://stackoverflow.com/questions/14735791/legality-of-web-scraping-vs-normal-use

Anyone knows an online tool that can scrape a page and create a REST API for the scraped data?


I'm looking for a SaaS solution that is able to login to a platform, scrape data (reports) and then allow accessing the data through an API. I have some reporting platforms that provide web reporting and email reporting but with no API. Online reporting doesn't help and email reporting, although can be automated and scraped, isn't so reliable.

If you are willing to do the scraping through your own connection, have a look at Import IO. They have a desktop application that you use to teach the system how to scrape a page, and then you run the crawler from that application - and you can run it for as long as you like, as far as I can tell.

You may then upload your data to the Import cloud, from where it is available via an API on the import.io servers. Useful data can be made public to donate it "to the commons" if you wish.


I did some more digging, found iMacros as a possible solution. Its Windows based, which is a drawback in my case, but it does allow automation of the scraping and afterwards interaction via common web scripting languages like PHP and ASP.net.


If you are familiar with jQuery, I think you can use node.js and Cheerio module, then you can create a simple application to do auto scraping. Actually I have already built a site to do on line web scraping based on the above mentioned tech, the site is www.datafiddle.net, you can take a look at it.


Source: http://stackoverflow.com/questions/19646028/anyone-knows-an-online-tool-that-can-scrape-a-page-and-create-a-rest-api-for-the

Wednesday, 27 August 2014

Scrapy, scraping price data from StubHub


I've been having a difficult time with this one.

I want to scrape all the prices listed for this Bruno Mars concert at the Hollywood Bowl so I can get the average price.

http://www.stubhub.com/bruno-mars-tickets/bruno-mars-hollywood-hollywood-bowl-31-5-2014-4449604/

I've located the prices in the HTML and the xpath is pretty straightforward but I cannot get any values to return.

I think it has something to do with the content being generated via javascript or ajax but I can't figure out how to send the correct request to get the code to work.

Here's what I have:

from scrapy.spider import BaseSpider
from scrapy.selector import Selector

from deeptix.items import DeeptixItem

class TicketSpider(BaseSpider):
    name = "deeptix"
    allowed_domains = ["stubhub.com"]
    start_urls = ["http://www.stubhub.com/bruno-mars-tickets/bruno-mars-hollywood-hollywood-bowl-31-5-2014-4449604/"]

def parse(self, response):
    sel = Selector(response)
    sites = sel.xpath('//div[contains(@class, "q_cont")]')
    items = []
    for site in sites:
        item = DeeptixItem()
        item['price'] = site.xpath('span[contains(@class, "q")]/text()').extract()
        items.append(item)
    return items

Any help would be greatly appreciated I've been struggling with this one for quite some time now. Thank you in advance!


Source: http://stackoverflow.com/questions/22770917/scrapy-scraping-price-data-from-stubhub

Tuesday, 26 August 2014

How do you scrape AJAX pages?


Overview:

All screen scraping first requires manual review of the page you want to extract resources from. When dealing with AJAX you usually just need to analyze a bit more than just simply the HTML.

When dealing with AJAX this just means that the value you want is not in the initial HTML document that you requested, but that javascript will be exectued which asks the server for the extra information you want.

You can therefore usually simply analyze the javascript and see which request the javascript makes and just call this URL instead from the start.

Example:

Take this as an example, assume the page you want to scrape from has the following script:

<script type="text/javascript">
function ajaxFunction()
{
var xmlHttp;
try
  {
  // Firefox, Opera 8.0+, Safari
  xmlHttp=new XMLHttpRequest();
  }
catch (e)
  {
  // Internet Explorer
  try
    {
    xmlHttp=new ActiveXObject("Msxml2.XMLHTTP");
    }
  catch (e)
    {
    try
      {
      xmlHttp=new ActiveXObject("Microsoft.XMLHTTP");
      }
    catch (e)
      {
      alert("Your browser does not support AJAX!");
      return false;
      }
    }
  }
  xmlHttp.onreadystatechange=function()
    {
    if(xmlHttp.readyState==4)
      {
      document.myForm.time.value=xmlHttp.responseText;
      }
    }
  xmlHttp.open("GET","time.asp",true);
  xmlHttp.send(null);
  }
</script>

Then all you need to do is instead do an HTTP request to time.asp of the same server instead. Example from w3schools.


Sporce: http://stackoverflow.com/questions/260540/how-do-you-scrape-ajax-pages

using Perl to scrape a website


I am interested in writing a perl script that goes to the following link and extracts the number 1975: https://familysearch.org/search/collection/results#count=20&query=%2Bevent_place_level_1%3ACalifornia%20%2Bevent_place_level_2%3A%22San%20Diego%22%20%2Bbirth_year%3A1923-1923~%20%2Bgender%3AM%20%2Brace%3AWhite&collection_id=2000219

That website is the amount of white men born in the year 1923 who live in San Diego County, California in 1940. I am trying to do this in a loop structure to generalize over multiple counties and birth years.

In the file, locations.txt, I put the list of counties, such as San Diego County.

The current code runs, but instead of the # 1975, it displays unknown. The number 1975 should be in $val\n.

I would very much appreciate any help!

#!/usr/bin/perl

use strict;

use LWP::Simple;

open(L, "locations26.txt");

my $url = 'https://familysearch.org/search/collection/results#count=20&query=%2Bevent_place_level_1%3A%22California%22%20%2Bevent_place_level_2%3A%22%LOCATION%%22%20%2Bbirth_year%3A%YEAR%-%YEAR%~%20%2Bgender%3AM%20%2Brace%3AWhite&collection_id=2000219';

open(O, ">out26.txt");
 my $oldh = select(O);
 $| = 1;
 select($oldh);
 while (my $location = <L>) {
     chomp($location);
     $location =~ s/ /+/g;
      foreach my $year (1923..1923) {
                 my $u = $url;
                 $u =~ s/%LOCATION%/$location/;
                 $u =~ s/%YEAR%/$year/;
                 #print "$u\n";
                 my $content = get($u);
                 my $val = 'unknown';
                 if ($content =~ / of .strong.([0-9,]+)..strong. /) {
                         $val = $1;
                 }
                 $val =~ s/,//g;
                 $location =~ s/\+/ /g;
                 print "'$location',$year,$val\n";
                 print O "'$location',$year,$val\n";
         }
     }

Update: API is not a viable solution. I have been in contact with the site developer. The API does not apply to that part of the webpage. Hence, any solution pertaining to JSON will not be applicbale.



Source: http://stackoverflow.com/questions/14654288/using-perl-to-scrape-a-website

Monday, 25 August 2014

Data Scraping using php

Here is my code

    $ip=$_SERVER['REMOTE_ADDR'];

    $url=file_get_contents("http://whatismyipaddress.com/ip/$ip");

    preg_match_all('/<th>(.*?)<\/th><td>(.*?)<\/td>/s',$url,$output,PREG_SET_ORDER);

    $isp=$output[1][2];

    $city=$output[9][2];

    $state=$output[8][2];

    $zipcode=$output[12][2];

    $country=$output[7][2];

    ?>
    <body>
    <table align="center">
    <tr><td>ISP :</td><td><?php echo $isp;?></td></tr>
    <tr><td>City :</td><td><?php echo $city;?></td></tr>
    <tr><td>State :</td><td><?php echo $state;?></td></tr>
    <tr><td>Zipcode :</td><td><?php echo $zipcode;?></td></tr>
    <tr><td>Country :</td><td><?php echo $country;?></td></tr>
    </table>
    </body>

How do I find out the ISP provider of a person viewing a PHP page?

Is it possible to use PHP to track or reveal it?

Error: http://i.imgur.com/LGWI8.png

Curl Scrapping

<?php
$curl_handle=curl_init();
curl_setopt( $curl_handle, CURLOPT_FOLLOWLOCATION, true );
$url='http://www.whatismyipaddress.com/ip/132.123.23.23';
curl_setopt($curl_handle, CURLOPT_URL,$url);
curl_setopt($curl_handle, CURLOPT_HTTPHEADER, Array("User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.15) Gecko/20080623 Firefox/2.0.0.15") );
curl_setopt($curl_handle, CURLOPT_CONNECTTIMEOUT, 2);
curl_setopt($curl_handle, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($curl_handle, CURLOPT_USERAGENT, 'Your application name');
$query = curl_exec($curl_handle);

curl_close($curl_handle);
preg_match_all('/<th>(.*?)<\/th><td>(.*?)<\/td>/s',$url,$output,PREG_SET_ORDER);
echo $query;
$isp=$output[1][2];

$city=$output[9][2];

$state=$output[8][2];

$zipcode=$output[12][2];

$country=$output[7][2];
?>
<body>
<table align="center">
<tr><td>ISP :</td><td><?php echo $isp;?></td></tr>
<tr><td>City :</td><td><?php echo $city;?></td></tr>
<tr><td>State :</td><td><?php echo $state;?></td></tr>
<tr><td>Zipcode :</td><td><?php echo $zipcode;?></td></tr>
<tr><td>Country :</td><td><?php echo $country;?></td></tr>
</table>
</body>

Error: http://i.imgur.com/FJIq6.png

What's is wrong with my code here? Any alternative code , that i can use here.

I am not able to scrape that data as described here. http://i.imgur.com/FJIq6.png

P.S. Please post full code. It would be easier for me to understand.



Source: http://stackoverflow.com/questions/10461088/data-scraping-using-php

PDF scraping using R

I have been using the XML package successfully for extracting HTML tables but want to extend to PDF's. From previous questions it does not appear that there is a simple R solution but wondered if there had been any recent developments

Failing that, is there some way in Python (in which I am a complete Novice) to obtain and manipulate pdfs so that I could finish the job off with the R XML package

Extracting text from PDFs is hard, and nearly always requires lots of care.

I'd start with the command line tools such as pdftotext and see what they spit out. The problem is that PDFs can store the text in any order, can use awkward font encodings, and can do things like use ligature characters (the joined up 'ff' and 'ij' that you see in proper typesetting) to throw you.

pdftotext is installable on any Linux system



Source: http://stackoverflow.com/questions/7918718/pdf-scraping-using-r